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ABSTRACT

The most general case of plane wave propaga-

tion, when normal and shear stresses occur simul-

taneously, is considered in a material obeying the

v. Mises yield condition.

The resulting non-linear differential equa-

tions have not previously been solved for any

boundary value problem, except for special situa-

tions where the differential equations degenerate

into linear ones. In the present paper, the

stresses in a half-space, due to a uniformly dis-

tributed step load of pressure and shear on the

surface, are obtained in closed form.
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I. INTRODUCTION

The basic differential equations govern-ng wave propa-

gation in an ideal elastic-plastic medium subject to the

v. Mises yield condition are easily formulated. It is es-

tablished [ti] that these equations are hyperbolic in char-

acter, and that there are two non-vanishing pairs of charac-

teristic velocities, +V , +V . However, the actual solu-
- 1 - 2

tion of boundary value problems is complicated by two causes:

in general, the differential equations are non-linear, so

that the V. are functions of the stresses, and there are,:1

a priori unknown, moving boundaries between elastic and

plastic regions. As may be seen from a review of the field,

[2], the published literature contains solutions only to one-

dimensional problems of plane, spherical or cylindrical pres-

sure waves where just one of the two characteristic veloci-

ties enters the solution, and where, furthermore, the dif-

ferential equations degenerate into linear ones, so that

this velocity, -+V, is a constant. No multi-dimensional prob-

lem, necessarily involving non-linear differential equations

with two pairs of non-constant characteristics, has at pres-

ent been treated.

As a step towards multi-dimensional problems the pres-

ent paper considers a case in which, while one-dimensional,

the differential equations are nonlinear and both character-

istic velocities enter the general solution. Subjecting a

half-space, Fig. 1, to a suddenly applied, uniformly dis-

tributed normal stress ao0 (t) combined with a shear stress

Numbers in parentheses [] refer to the bibliography.

---



'o(t) 0 plane waves of pressure combined with shear are gen-
erated. For the case of step loads, a (t) = aoh(t),T (t) =
To h(t) , closed form solutions for the stresses and veloci-
ties can be obtained. For such Loads dimensional considera-
tions make it possible to convert the partial differential
equations into a set of simultaneous ordinary differential

equations which can be solved by quadratures in terms of
elliptic integrals and/or simpler transcendental functions.
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II. FORMULATION OF THE BASIC EQUATIONS

The basic equations governing wave propagation in an

ideal elastic-plastic continuum consist of a yield condition

defining the plastic state, a set of constituitive equations

relating stress, strain and/or their derivatives, and the

equations of motion.

Starting with the yield condition, this report will

consider a material obeying the v. Mises condition

f J' - k2 = 0 (2-1)
2

where

j 1 S.. S.. (2-2)
2 2 ij 13

is the second invariant of the stress deviator, and k > 0

is the yield stress in simple shear.

For an ideal elastic-plastic material the total strain
Eeij is composed of an elastic part cij and a plastic part

P., so that the total strain, and strain rate are, re-iJ
spectively

E P

C.. =CE..+EC..(-3ij (2-3)

3 =  E. + P(24

iJ ij ij

Employin9 conventional symbols, listed on pages iv and

v, the elastic portion of the strain zate is

-3-



Eij - 2G i3+ J l vd (2-5)

while the plastic portion, obtained from the concept of a

plastic potential [3] is

"P = .
f  (2-6)

The quantity 2 is a function of space and time defining

the rate of energy dissipation at the respective point in

space and time and is necessarily non-negative, ? > 0 . In

regions of plastic deformation inherently accompanied by

energy dissipation, ? must be positive

X > 0 . (2-7)

For the v. Mises yield condition, Eq. (2-1):

6f
6G.. -1S

Ii

so that

1 u _ 1 . + l-2v 1 6.. + Ns (2-8)
2 i,j ji 2G ij 6G(l+v) 1j  +(

where the strain rates are expressed in terms of the com-

ponents u. of the velocities

.+u.. (2-9)ij 2 i,j +  ji)

Finally, retaining only linear terms in the equations of

motion, the latter become

;1.

Cij,i = P t (2-10)

-4-



The equations stated above, i.e., Eqs. (2-1), (2-8),
and (2-10), apply in regions of plastic deformation accom-

panied by energy dissipation. In general, there will also

be regions where at the particular time considered no plastic

deformation or energy dissipation occurs. In such regions,

while the strain rate-velocity relations (2-9) and the equa-

tions of motion (2-10) still hold, the yield condition (2-1)

and the stress-strain relation (2-8) are no longer valid.

Instead, in "non-dissipative" regions*the total strain rate

is

E = (2-11)
13J i

while

J' < k2  (2-12)

2

The general equations are now applied to the following

plane strain problem in Cartesian coordinates x, y, z. The

originally stress-free half-space x > 0 , Fig. 1, is sub-

jected to time dependent, but uniform, loads on its surface
x = 0,

Yx (0,y,z,t) = Oo(t )

t xy(O,y,z,t) = TOW (2-13)

T (0,y,z,t) 0

where the prescribed loads a, and T 0 vanish for t < 0.

Because of the nature of the yield condition (2.1), the in-

tensity of the shear is subjected to the restriction

I To(t) IK k . (2-13a)

* "Non-dissipative" regions in the sense used here include
neutral plastic regions where J1 = k

-5-



In a plane strain problem the stresses T and 'ryzand the displacements in the z-direction vanish, while all

other quantities are independent of the coordinate z In

the present problem, the prescribed loads are also indepen-

dent of y , so that the response too will be independent of

y , and all quantities will be functions solely of x and

t. When writing the various equations in scalar form, all

derivatives with respect to y or z will therefore vanish.

In regions of plastic deformation and energy dissipa-

tion, h > 0 , Eq. (2-8) gives four meaningful scalar equa-

tions:

1 + 1- 2v j + ?s -0 (2-14a)
2G Sx 6G(l+v) I x -

1 + l-2v F + s =0 (2-14c)

2G z 6G(l+v) 1

+ 1 (2-d)

where T -T r and u , v are the x- and y-componentsxy

of the velocity.

The equations of motion, Fq. (2-10), after the substi-
Ss + 1 J give the two non-trivial relations

x  x 3 J

asx 1 J  ail

(2-15)

-6-



Subtracting Eq. (2-14c) from Eq. (2-14b), one finds

(s - ) + A(s -s ) 0
y z y z

Initially, at t = 0 , s and s are both equal to zero,y z

so that the above equation requires s - s for all valuesy z

of x and t. Noting that by definition sx + sY z :- 0,

one finds

S= S = - -
Sy z 2 s (2-16)

which is used to eliminate s and s .
yz

Thus, the number of stress variables is reduced to

three, namely, s , J , and T . Simultaneously, the

number of independent constituitive relations is also re-

duced to three. A convenient set, obtained by obvious manip-

ulation of Eqs. (2-14) is

1 uTG J1 6x

s + - 2 (2-17)

2G x x 3 Jx

+ 1 = dv

2G - 2 ox

where

2(l+v)
1 - 2v (-8

Using Eq. (2-16) leads finally to the yield condition

in the simple form

3- S2 + T2 = k2  (2-19)
4 x

-7-



This relation, together with the five equations (C-15) and

(2-17), are available to determine the six unknowns s

r, u , v and N > 0 in regions of plastic energy dissipa-

tion which will be referred to as "dissipative" regions.

There will also be complementary "non-dissipative" regions

without plastic deformation or energy dissipation. In such

regions the equality (2-1) is to be replaced by the inequality

(2-12). As previously noted, the differential equations for

the non-dissipative regions may be obtained by using c.=GE
ij= 1j

instead of Eq. (2-8) in conjun2tion with Eqs. (2-9). This

is equivalent to substituting N 0 into Eqs. (2-14) giving

1 - + 1 -2v 6u
2G x 6G(I+v) 1

1 1- +l2v

2G y +6G(l+v)' 1

(2-20)
1 + 1-2v =0

2G Sz 6G(i+v) 1

1 1 iv

2G t  _2 "3S

Noting that Eq. (2-16) is still valid in non-dissipative

regions, and recalling the definition of f , Eqs. (2-20)

may be reduced to

1i ul

1 . 2 ou/ (2-21)

2G sx 3 Ox

2G 27I

-8-



Moreover, the inequality (2-12) becomes

aS + T 2 < k 2  (2-22)
4 x

Subject to this inequality, the three equations (2-21) and

the two equations of motion (2-15) form a system of five

simultaneous differential equations for the five functions

s , J , T , u and v This system, of course, is equi-

valent to the conventional equations governing elastic wave

propagation.

The complete boundary value problem to be solved involves,

therefore, an a priori unknown number of dissipative and non-

dissipative regions with unknown and moving boundaries. The

solution in each region is to be obtained from the appropriate

set of equations given above, and from matching and external

boundary conditions.

The solution of the boundary value problem formulated

above for a general input o0 (t) , r o(t) is a formidable

problem, even if approached by numerical methods. As stated

in the introduction, the basic set of non-linear differential

equations is hyperbolic, and has two pairs of characteristic

velocities, +V . and +V . The use of the standard numeri-

cal approach based upon the method of characteristics is,

however, complicated by unknown moving boundaries between

the regions and by the occurrence of discontinuities.

An alternative numerical approach is available which

eliminates the difficulties caused by moving boundaries and

by discontinuities. it replaces the differential equations

by finite difference ones and uses artificial viscosity terms,

as suggested in [4], in order to obtain some measure of ap-

proximatio to the discontinuities which occur in the exact

solution.

-9-



It should also be noted that for either of the two nu-

merical approaches, a starting solution valid for a short

time is required. The usual power series approach used to

obtain a starting solution is unsuccessful if o0 (t) or

T 0 (t) is discontinuous at t = 0 , because the point x = 0,

t = 0 then becomes a singularity.

The remainder of this paper* will not concern itself with

the application of either of the mentioned numerical approachs

to the general problem, but will consider only the much simp-

ler situation when the applied surface loads are step func-

tions in time. For this case solutions in closed form can

be obtained. In addition to giving some idea of the nature

of the response in the general case of time dependent load-

ing, the results give a starting solution for a numerical

treatment of the general problem.

* Except for a discussion of open questions concerning the
application of the method of characteristics in Appendix B.

-10-



III. HALF SPACE SUBJECTED £O COMBINED NORMAL

AND TANGENTIAL STEP LOADS

Consider the case where the surface loads are step func-

tions of time

0 (t) = 0oh(t)

(3-1)
T (t) h(t

Using dimensional considerations, the number of dimensional

quantities appearing in the equations of Sec. II may be re-

duced to four, i.e., x, t, G and p , by replacing the un-

known variables s , J , -, u and & by non-dimensionalX 1

ones

x 9G 1.
k ' k ' k u v (3-2)

respectively, while X is expressed by a new function A

defined by

(3-3)G

The four dimensional quantities may be arranged into a single

non-dimensional independent variable

U = .FG- _ o (3-4)

All other possible non-dimensional combinations of x, t, G

and p are functions of U , and are therefore equivalent

-Ii-



to Eq. (3-4). Thus, the non-dimensional quantities (3-2) and

(3-3) are solely functions of the independent non-dimensional
variable, U , and of the non-dimensional parameters ,

0o/k and T/k .

A. DISSIPATIVE REGIONS

To convert the partial differential equations obtained

in the previous section into ordinary differential equations

with respect to U , note from Eq. (3-4)

x 1 t/d (3-5)
x t'G dU

U d (3-6)
J

Using Eq. (3-3), the condition X > 0 which must be

satisfied in dissipative regions becomes

UA' < 0 (3-7)

where denotes differentiation with respect to U

The relations (2-17) assume the form

U -x +-A 2 VG =UA' + P' = 0 (3-8)

U t  + UA' + -v oG 0

_J

and the equations of motion, Eqs. (2-15), become

-12-



S I jI
x +G u +0
k k k

(3-9)

+ U

The yield condition (2-19) in terms of sx/k and /k

is

( + = (3-10)

and its derivative with respect to U is

+ 9 -= 0 (3-11)

Equations (3-8), (3-9) and (3-11) form the following set of
simultaneous, linear, homogeneous equations for the deriva-

tives of the unknown functions:

0 u 1 0 0 0~k

U _x_

2 0 2 0 0 0 k

Sk= 0. (3-12)

U 1 _ _i -

0 0 0 2 k k

0 0 0 1 U 0 k -

k 0 0 k 0 0 U j

-13-



If the determinant of the system (3-12) does not vanish,

sx' = J' = = T' = vt = UAI = 0 , and Eq. (3-7) being vio-

lated, the above equations inherently do not apply. On the

other hand, solutions where UA' < 0 may exist if the de-

terminant of Eqs. (3-12) vanishes, which gives the condition

x s (l-u2 )(P-3U 2 ) - T2U2 (4+P-3U2 ) = 0 .(3-13)

This condition, while necessary, is not sufficient to ensure

UA' < 0 , which remains to be proved later. Equation (3-13)

expresses the variable U in terms of the stresses sx and

T However, since s and T are related by the yieldX

condition (3-10), either may be eliminated with the result

Sx /U 2 (4+ -3U 2 )k + V 3( + U a  3-14)

F_!3 +U (

and

IL=+ (3-15)

The fact that U, s x, and T must be real results in

restrictions on the extent of dissipative regions. The bounds

on potential locations of dissipative regions depend on

whether the value of is greater than, less than, or equal

to three:*

* For the usual range of Poissonts ratio, 0 < v < 1 he
value P , Eq. (2-18), varies from 2 to o.

-14-



For >3: OK U u <K 1 or A/P <UK +' (3-16)

For (1<3: O<U <U < or 1 KU <UK (3-17)- 1 2 - < 3 -7

For V=3: 01< U < u < (3-18)

where U and U designate the end points of a dissipative1 2
region. Plots of Eqs. (3-14) and (3-15) for typical values

of r. are shown in Figs. 2 and 3, respectively. As required

by the two inequalities in each of Eqs. (3-16,17), there are

two separate branches except for the special case = 3

when the branches for s merge, while the ones for T joinx

in a cusp at U = 1.

It is interesting to note that the bounds U = _/(4+)/3

and U = 1 , respectively, correspond to the velocities of

P-waves and S-waves in an elastic medium, The bound U=

will be seen in Subsection B to correspond to the velocity

of propagation of plastic shock fronts.

In a dissipative region where the determinant of Eqs.

(3-12) vanishes, the variables J', u' , ' p v'

and UA' can be written in terms of s'
x

1, 3 - s' (3-19a)

_U sx  (3-19b)

T, - Sx (3-19c)

"( ) 3-' ( 3-19d )

UA' u(4+03U2 )  (3-19e)

2(3U_'-)sx x

-15-



This set of equations becomes inapplicable for U = N ,
where T = 0 . The physical reason for the breakdown will

become apparent in Subsection B.

It is now necessary to investigate whether Eq. 3-7),

a prerequisite for dissipative regions, is satisfied every-

where in the ranges given by Eqs. (3-16 to 18). Using Eq.

(3-14) to express j and s' in terms of U , Eq. (3-19e)x x
becomes

3102 + 0 + U2 ( B+i)][ O
2  + 13 2

UA < 02_( +o2 ) ( -3u2 )
(3-20)

or

U2  + - 2 ___( ___

3U < 0 (3-21)
- 3u2

Eq. (3-21) is valid if either

U2 > 2 V/( +i - and U2 > (3-22)

3

or

U2 < 2 d/(#+l - # and U2 < . (3-23)-,/- 3

In the pertinent range, 0 > 2 , the following inequalities

apply:

For > 3: 1 < 2 JP(W+i) - P < (3-24)

For P< 3: < 2 .p+1) _ 1. (3-25)

-16-



Thus, for ( / 3 Eq. (3-22) is satisfied in one range of

each of Eqs. (3-16) and (3-17), while Eq. (3-23) is satisfiea

in the other ranges. The regions described by either of

Eqs. (3-16) or (3-17) are consequently possible regions of

plastic dissipation. For the special case = 3 , Eq. (3-21)

is satisfied in the range, Eq. (3-18). All branches of the

curves of s and Tr against U , shown in Figs. 2 and 3,x

represent therefore valid solutions.

Equations (3-14) and (3-15) already give sx  and T

as functions of U , while the remaining quantities J ,1

and v can be obtained by integration from Eqs. (3-19ab,d),

respectively. To determine J , Eq. (3-19a) may be inte-
1

grated by parts

() + u-r3)y + const. (3-26)

After a series of manipulations shown in detail in Appendix

A, the integral in Eq. (3-26) is obtained in closed form in

terms of elliptic integrals,

J (U) J (Uo)
- 1 - = H(U) - H(u ) (3-27)

k k 2

where J (U ) is the value of J at the boundary U of
1 2 2

the region. When 0 < U < N the function H(U) is

+H(U) = 3-' F(O,k) + V3(341+) E(k,k)

+ 3L 1-1 ) H (0' - - ((-3)tanh-  U 3- _
4 4 2 \ 4+f-3U/

(3-28)

-17-



where the sign of H(U) must be chosen to correspond with

that of sx  in Eq. (3-14). F, E, and H are the elliptic

integrals of the first, second, and third kind, respectively,

and

sin 0 4 (+1b (3-29)

(+4(+I

k 2 4( + 4 (3-30)

When \F-7T < U<V(+), the term tanh -' in Eq. (3-28)

is to be replaced by coth - 1. The function H(U) is well-

behaved except for U = vFT7 where the tanh- i (or coth-1)

term becomes infinite. When P = 3, the term does not appear.

Similar integrals for the velocities u and v are

also evaluated in Appendix A. The expression for u in-

volves only transcendental functions, while the one for

is in terms of elliptic integrals, except for P = 3 , where

the elliptic integrals reduce to simpler transcendental func-

tions.

B. DISSIPATIVE SHOCK FRONTS

The wave propagation problem under study being hyper-

bolic, the possibility of discontinuities in the solutions

must also be considered, and in addition to dissipative re-

gions, potential locations of fronts of discontinuity in-

volving energy dissipation must be explored. The general

study, [51, of elastic-plastic wave propagation shows that,

in an ideal elast-ic-plastic ma-erial sbc %o t ild

condition (2-1), fronts of discontinuity can occur only in

locations where the shear stress tangential to the front

vanishes. The discontinuities are restricted to the mean

stress, J /3 , and to the particle velocity normal to the

-18-



front, the velocity of which is ,f- p , where K = r3G/3 is

the (elastic) bulk modulus. The complete solution of the

problem considered here being a function of U as defined

by Eq. (3-4), such a front, if it occurs, is 2ocated at

u = L (3-31)

The requirement T = 0 defin s the value of s x  at the

front

x + 2 (3-32)k -J

while the discontinuities AJ and Au are related by mo-1

mentum considerations

AJ + % 3FpG Lu = 0 (3-33)1

In addition, the condition that energy at the front is dissi-

pated requires

AJ /sX > 0 (3-34)

where "A" signifies the valoe behind the front, minus the

value ahead.

The fact that a discontinuity in the solutions may oc-

cur at U - \/3 is the cause of the breakdown of the dif-

ferential relations (3-19) noted previously.

C. NON-DISSIPATIVE REGIONS AND NON-DISSIPATIVE SHOCK FRONTS

In non-dissipative regions, the governing equations (2-15)

and (2-21). when written in terms of the non-dimensional

variables (3-2), and of the independent variable U become

-19-



0 1 0 0 ]~k

0 2 0 --

2 3 k

1 U u 0 o0 (3-35)

0 0 -

2 2 k

0 0 0 1 U

while the yield condition Eq. (2-22) becomes

() (,)2 < (3-36)

Relations (3-35) being a set of homogeneous linear equations,

it follows that

s' =J'=u' = T =v =0 (3-37)

unless the determinant of the system vanishes, i.e.,

u( -U2 ) (4+ -u 2 ) = 0 . (3-38)

Separating each non-dissipative region which contains

positive roots* of Eq. (3-38) into two or three regions ex-

cluding these roots, Eqs. (3-37) require that all stresses

and velocities within the regions formed in this manner are

constant.

* The negative values of U are of no consequence because

U > 0 , and the root U = 0 can be shown to be trivial.

-20-



Without further analysis, one expects in a non-dissipa-

tive region the discontinuities known from the theory of

plane elastic waves, i.e., P- and S-fronts, and indeed the

positive roots of Eq. (3-38)

up 3 .o s -- 1 (3-39)

define locations moving with the proper velocities. The

solution may therefore have ciscontinuities at these points.

At U discontinuities x , sx , AJ 1 and Au may

occur, related by

A"3 :ALs : LJ ,- \/~u 1 .J -y J (3.J40)A x :A x :il: A 4+r, : 4+f, *

while at U discontinuities AT and A are possible,S

where

T-\ G Av (3-41)

Obviously, the intensity of the discontinuities must not

violate the yield condition '3-36).

-21-



IV. CONSTRUCTION OF SOLUTIONS

In the previous section, solutions of the basic differ-

ential equations have been obtained for regions with and

without energy dissipation, not knowing the extent of these

regions in the complete solution to be found. Further, there

are three potential locations of discontinuities, one with,

and two without dissipation. These partial solutions must

now be combined to form a complete solution satisfying the

externally prescribed conditions. Due to the multitude of

possible combinations, and due to the lack of a general

existence and uniqueness theorem, it is imperative to use a

systematic procedure in the construction of solutions to be

certain that no solution is overlooked.

The yield condition, Eq. (2-1), being an even func-

tion of the ,omponents of stress, the complete solutions will

also b e e v e n in o and in T . Without loss of

generality, the following will therefore, consider only the

case of compressive surface pressure, a° < 0 , and positive

shear, 0 < r0 < k . Consequently, the lower sign must be

taken for s in Eq. (3-14), and correspondingly, in Eq.x

(3-28) and in Appendix A for the functions H(U) , Hu(U) and

Hv(U).

The prescribed surface loading, Eq. (3-1), leads to the

boundary conditions for U = 0 ,

ax(0) = Sx(0) + I J(o) = )

T(O) = TO
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where the nature of the material requires t0 < k. The

half-space being originally stress free and at rest, all

stress components and velocities vanish for U -> co , furnish-

ing the boundary conditions

lim [Sx,J ,T,'x, yU ] - 0 (4-2)

Because the solutiens in dissipative regions chanqe in

character depending upon the value of f , separate treatment

for the cases > 3 and f3 < 3 i3 required.

A. SOLUTIONS FOR 2 3

Starting with the fact that for U ->oo all stresses

vanish, the solutions will be developed by consideration of

the conditions for gradually decreasing values of U . The

stresses given by Eq. (4-2) do not satisfy the yield condi-

tion (3-10), and the first changes. from vanishing stresses

to initiation of yield, must therefore be elastic. Such

changes can only be discontinuities at U = Up E J (4+p)T3 and

at U = U S  1 , described by Eqs. (2-40) and (3-4i).

Case A.1 a combination of discontinuous changes

t1o xand AT in their respective locations are selected

so that yield according to Eq. (3-10) is not reached, no

dissipative regions or shock can occur anywhere, and the

stresses introduced at the P- and S-fronts must remain con-

stant up to the surface, U 0 0. The resulting, completely

elastic solution leads to surface loads

0 x

(4-3)

0-A1
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If the combination of 6o and 6T just satisfies thex
yield condition, but no dissipative region is utilized, the

above solution still applies. It is therefore valid for the

range

0 0 > + - (-4

Case A.2 Consider next the situation when the combina-

tion of Aox  and A satisfies the yield condition (3-10),

an . A'r 0 For > 3 the yield condition being satis-

fied only for values U $ 1 , the plastic shock at

u = /3 > 1 cannot occur, and of the two potential ranges

for dissipative regions, Eq. (3-16), only one

0<OU <U < 1

remains to be considered. For = 3 , the value of the

shear T = AT X 0 at U :;- /-3 i also precludes a plas-

tic shock, and the above range is again the only one to be

considered. At the terminal point U of the dissipative
2

region, if any, the value of the shear stress must be equal

to that in the adjoining non-dissipative region, T = A .

Figure 3 shows T as a function of U for typical values

of For any , there is one, and just one, value U
2

which corresponds to T = AT , where a region of plastic dis-

sipation may begin. The other end point, U < U , of the

dissipative region, may be selected at will, so that it may

correspond to any value of T > 6"r As U approacheso !

U , the value T0 approaches - , until in the limit the2 0

solution for a = G obtained in A.1 is again reached. The

region U > U > 0 is necessarily non-dissipative with con-

stant stresses.
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The entire stress history is obtained by computing Sx

from Eq. (3-14), T from (3-15), and J from (3-27) and
1 1

(3-28). The normal stress at the surface, co=S (U )+= (U),x1 31 1
is a function of To AT and of the corresponding values

U and U
1 2

0 2 -V - i- + H(U) H(U2)F3- 2 _33 2

(4-5)

This expression for v depends on AT through the second

and fourth terms only, both contributions having the same

sign. Both terms vary monotonically, and because U in-2

creases with decreasing AT , /' - (AT/k) 2  and H(U ) both
2

vary inversely to AT . For a given value of To , the

largest surface pressure, o , is therefore obtained for
2

AT -> 0 Thus, Case A.2 applies if

- \ -Oo < 2 (4-6)

where a is defined by Eq. (4-4), while a is an implicit1 2

function of T0  and ,

02 2 1 - 2- + 1H(U [T 1

k - 3 23 \-3 3J 1 H(~ 0A ) 3

(4-7)

The velocity history may be obtained from Eqs. (3-40)

and (3-41), and from Appendix A.

Case A.3 Finally, let the discontinuity Aa x  be -uch

that the yield condition will be satisfied by the discontin-

uity Ac3x  at U = U p alone,

Lax_ 4 + 3 (4-8)
k
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The yield condition being satisfied at U Up , both of the

two dissipative regions, Eq. (3-16), must be considered.

However, the shear T just behind the P-front being zero,

Fig. 3 shows that no dissipative region can actually occur

for U > because the starting and end points of such

region would be identical, U = U = 3 The stresses

in the range Up > U > //3 can therefore not vary and are

given by Eq. (4-8). At U = V , the necessary condition

T = 0 being satisfied, a dissipative shock may occur. The

strength of this shock, described by AJ is arbitrary ex-:1

cept for the sign,

AJ < 0 (4-9)

In the range -,f 7 > U > 1 , there is no alternative to a
non-dissipative region of constant stress. At U = 1, the

yield condition excludes the possibility of an elastic change

in shear, but Fig. 3 indicates that a dissipative region is

possible from U = 1, corresponding to T = 0, to any de-
2

sired value U , corresponding to the surface shear Tr1 O

The surface pressure is given by

=a +-AJ . (4-10)
0 2 3 1

If AJ is selected equal to zero, the solution obtained
1

is identical to that obtained in Case A.2 for o = a . Byo 2
using sufficiently large values of AiJ , one obtains

solutions for any value I 0I a> y 2 of the surface pres-o 2

sure without upper bound. Equation (4-10) defining AJ
1

uniquely a5 a function of I 0 1 >_I a 2 , the solutions in

the range are again unique, and do not overlap Case A.2.
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The corresponding velocity history may be obtained from

Eq. (3-33) in addition to the relations noted in A.2.

The three cases considered exhaust all the possible com-

binations of regions and fronts for 2 3. There is one and

only one solution for any possible combination of surface

loads o and TO  The regions in the u , r -plane

governing each case and the separation lines a and u1 2

are shown in Fig. 4, drawn for = 5 . The appropriate ex-

pressions for the solution are listed in Tables I to III.

Typical distributions of c and T for the non-elastic

cases are shown in Figs. 5 and 6.

B. SOLUTIONS FOR < 3

Reasoning exactly as for , 3 , the stresses must

vanish for large values of U until the P- or S-fronts are

reached, and elastic discontinuities in stress, Aox and At,

occur to initiate yield.

Case B.1 If the discontinjities La and AT arex

sufficiently small so that yield is not reached, the situa-

tion is exactly as in Case A.1 for 3 > 3 and Eqs. (4-3)

and (4-4) apply.

Case B.2 If the stress discontinuities Aa and AT

are such that the yield condition is just satisfied, but

AT X 0 , a dissipative region or shock is impossible unless

U < 1 Due to At / 0 , the dissipative shock at

U = i/3 < 1 cannot occur, since it requires T = 0 , but

a dissipative region may start at a point U < \I-/3 corre-

sponding to T = AT . Continuing this region to a point

U < U corresponding to T = T AT , a solution is ob-1 2 0 '

tained for a value a , not known a priori. As in Case A.2,

the entire stress history is obtained from Eqs. (3-14), (3-15),
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(3-27), and (3-28), while the normal stress at the surface,

a., is given by Eq. (4-5). The dependence of o on AT

is again monotonic so that the solutions found in the range

are unique. It is important to note that the function H(U)

becomes infinite as U approaches ,1 3 . Therefore, for a

given T , it is evident that in the limit AT -> 0 ,0

U - J13 , and the surf--e pressure will increase without

bound, a 0 -0o.

The solution described applies, therefore, for any value

of the surface pressure not covered by Case B.1, except that

the condition T0 > LT / 0 excludes the case T = 0.

Case B.3 The remaining possibility is a discontinuity

A x at Up , sufficient to satisfy the yield condition. In

the adjoining non-dissipative region, ox = Aox and T--6T=0,

which permits a dissipative shock of arbitrary strength

LJ < 0 at U = . This shock may be followed by a non-

dissipative region of constant stress, furnishing solutions

for TO = 0 for any value of o not covered by Case B.1.

If one attempts, starting as in the previous paragraph,

to employ a dissipative region behind the shock, i.e., from

u = v to some value U < U , the singularity in H(U)2 1 2

at .f173 leads to o = -co, a physically unrealistic situ-

ation.

The three cases considered furnish, therefore, one and

only one solution for each combination of a and TO
The regions in the o0 , T-plane governing each case are

shown in Fig. 7. The appropriate expressions for the solu-

tion are listed in Tables I, II, and IV. Typical distribu-

tions of and T for Case B.2 are shown in Fig. 8. The

velocity history for < K 3 may be obtained in a manner

analogous to that for 3 > 3.
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V. SUMMARY OF RESULTS AND DISCUSSION

The stresses and velocities in an ideal elastic-plastic

half-space, subject to the v. Mises yield condition, have

been obtained due to normal and shear stresses on the sur-

face, both of which are step functions of the time. The

solutions are in closed form, containing elliptic integrals

and simpler transcendental functions. Expressions for the

stresses, including pertinent basic relations, are tabulated

in Tables I to IV, while the expressions for the velocities

are given in Appendix A. The results indicate a number of

ranges where different solutions apply, depending on the in-

tensity of the surface loads, and on the value of a material

parameter =2(1+v) which varies with Poisson's ratio.1 2v
The dependence of these ranges upon the applied surface

stresses c0 and 'r is shown in Fig. 4 for > 3 , and

in Fig. 7 for F K 3.

Excluding the cases where u and T are so small

that no plastic deformation occurs, Figs. 5, 6, and 8 show

the stresses for a typical case of each of the mjor situa-

tions. Figures 5 and 6 apply if If _ 3 , which corresponds

to Poisson's ratio v > 1/8. The non-dimensional ordinate
U in the plots is proportional to x/t so that the fig-

ures illustrate the x-distribution of the stresses at any

Lime L. For dn dpplied compressive stress, a0 0 , in the

range -a (roB) < -0 ( - r ( ,") , the stress plot is given

by Fig. 5. There is an elastic precursor consisting of a P-

wave of uniform strength, followed by an S-wave, also of

uniform strength, so that the combination of the two states
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of stresses just satisfies the yield condition. Proceeding

towards the surface there is no plastic deformation or

energy dissipation until a point U = U is reached. Plastic
2

deformation acco ?anied by energy dissipation occurs in a

region from U to U . In this region, o and T increase2 1 x

until the surface values a and -c are reached. Finally,

betwe-a the end of the plastic region at U1 , and the sur-

face, the stresses are constant. If -o o > -a , Fig. 6, there is

again an elastic precursor consisting of a P-wave of uniform

strength s0 that the yield condition is just satisfied.

At U = f there is a plastic shock, a discontinuity in

G without change in r , followed by a region of constant

stress. From U = 1 to U = U , there is a plastic region1

where a and T increase, just as in Fig. 5, until theX

surface values a T are reached. For 0 < U < U

there is again a region of constant stress.

For P < 3 , v < 1/8 , Fig. 8 applies for -o >- o (T 0)

and ' 0 0. The stress history in Fig. 8 is similar to

Fig. 5 for ' _ 3 , but there is an important difference.

As the end point U of the plastic region approaches2

\fc7L The surface pressure -a°  increases beyond any bound,

so that a solution with a plastic shock never occurs, ex-
cept if T = 0

In view of the fact that no general existence and

uniqueness theorem for the problem of wave propagation in

elastic-plastic media is available, it i pertinent to note

that solutions were found, for any combination of Poisson's

ratio v , surface pressure -7o , and suLL.ce shear I 0 I ,

and that these solutions are unique.

While the method of solution used in Sec. III does not

appear to utilize the characteristics of the system of

partial differential equations, the characteristic velocities
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appear in the analysis in a disguised form. Inverting Eqs.

(3-14, 15), so th at the non-dimensional variable U ,

Eq. (3-4), becomes a double valued function of the state of

stress, it is shown in Appendix B, that the chaiacteristic

velocities V are related to the values of U

V.z- G. U.

Figures 2 and j demonstrate, therefore, the dependence of

the characteristic velocities V. on the values of s or T.i X

The availability of the characteristic velocities Vi

and of the relations along the characteristics, also given

in Appendix B, are an invitation to their use for numerical

analysis in the case of general surface stresses , 0(t) and

T (t. However, the moving boundaries between dissipative
0

and non-dissipative regions pose difficulties requiring

further study as outlined in Appendix B.

The approach used in Sec. III is readily applicable to

other types of yield conditions. The case for the Tresca

condition becomes slightly more involved than for the v.

Mises condition, since there are several sub-cases depending

on whether or not is one of the extreme principalz

stresses entering the yield condition, 1 J max - om I = 2k.

In the sub-case which controls in the present problem, oz

is th- intermediate principal stress and the relations be-

Lween sx or 'E and U , Eqs. L3-14, 15), change, but

without affecting the nature of the solutions and with only

minute numerical effects.
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Another potential generalization of the present paper

is a two-dimensional problem, the determination of the steady-

state solution for an elastic-plastic half-space subjected

to a step pressure on the surface x = 0 , moving with super-

seismic velocity VL  Using a system of polar coordinates

moving with tha front of the load, Fig. 9, dimensional con-

siderations require the stresses to be functions of the

angle 0 , but not of the radius r This permits the re-

duction of the partial differential equations into a set of

ordinary ones, containing, however, a larger number of un-

known dependent variables than in the problem treated here.
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APPENDIX A

INTEGRATIONS REQUIRED FOR THE DETERMINATION

OF J , u, and v

1. EVALUATION OF J1

Starting with Eq. (3-26) in the text, substitution of
the value of s/k from Eq. (3-14) yields

J (U) _2 __ _ 4+(3-3u 2

- k 3U 2 - 0 + U2

S / U 2 ( 4+f3- U' 2UdU

+ 6 3f V + UZ (3U2 _ )2 + const.

(A-1)

requiring the evaluation of the integral

U U 2

J f + -a (3C1)- = fV P + r, (3T-1)2

0 0

(A-2)

Multiplying numerator and denominator in the last integral

by

I(U) becomes

(4+r -

J- 3 P)2 n
I(U) 3 43- (A-3)
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which is of the form

yf R(t)dt

b V(a-t)(t-b)(t-c)

where R(t) is a rational function of t . This integral

may be converted, Byrd and Friedman [6], No. 235.20, with

a > y > b > c , to

y R(t)dt g _c]2sn2u (A-4)
f (a-t)(t-b)(t-c) f g 2U

where *

Sill a-bc t-b

gaa-b
a-c

g 2 (A-5)
,f/a- c

= am u = sa-c)(--c
1

snu = sin k
1

and

a = b = 0 c = - and y = U (A-6)

while

R(T) = 12
3 -v (3 - 3

* Note the difference in meaning of the symbols U and u.
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Substituting these values into Eq. (A-5), one has

sn2 u 4

4 W(+ ) (A-7)

,, / 4(;, . 1 U2
sin ( = snu = (+l u

0 V (, +,4 ) (:3+U')

The argument of R which appears on the right side of

Eq. (A-4) is

(_+4) sn u4 ( +l) dn7-

and the integral (A-3) finally becomes

I(U) = (f+4)21 sn2 u[4(++l)dn2u - 3 sn2 U] du (A-8)
I Q- +I f [4((:+l)dn 2 u - 3( +4)sn2u 1

0

Noting the relations (Pierce [7], Nos. 730, 731)

sn 2 u + cn2u 1

dn -r -sn-u 1

Eq. A-8) reduces further to
u 1

I(U) sn2 u cn2 u du (A-9)
o - 1 i sn2 u)2
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Applying [6] No. 362.18 for a 2= 13±41 j2 +4 02• = l '4 4(+i) -4
gives

-(U- F6( kl~cz, - E(k,k) - F F(0,)

+ +4 snu cnu dnu
+ 1 (A-10)

f-+4 sneu J
f3+1

where

u F(O,k) elliptic integral of the first kind

E(u) E E(O,k) elliptic integral of the second kind

Il(u,a 2 ) -H(O,a 2 ,k) elliptic integral of the third kind

and

snu = sin 0 4(+)

cnu = cos 44 .2T (A-i )

dnu = i - ksin-

Using Eq. (A-Il), the last term in Eq. (A-10) becomes

4 snu cnu dnu 2f /4..4+i 7IiZ. -=. u (A-12)
\ +i I + -- 2_.. ..3U2

-- 11 v kP l)k u P1 )

Returning to the original expression (A-i), noting that

1(0) = 0 and that expression (A-12) cancels with the first

term on the right side of Eq. (A-l), one has
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J (U)
I = H(U) + const. (A-13)

k

where

H(U) = + 13( +l)L - F(Ok) + E(O,k) - 4 (A-14t)

If the constant of integration in Eq. (A-13) is expressed

by the value of J1/k at the end of the region U , then

I u U 1 - H(U) - H(U ) (A-15)k k 2

For any given value of U , in a dissipative region, k
may be found from relation (A-li) while the F and E func-

tions may be taken from any of several tables of elliptic

integrals, e.g., [8]. The integral of the third kind, H

is tabulated in Selfridge and Maxfield [9] for various values

of T but only for a 2 < 1. "Additional formula" on page xi

relates the tabulated values with those for a2 > 1 required

here,

I(¢,-t2 ,.) + ri( ,- 2 ) = (ck)

+ tan - ' 1(
I  - P sin )

(A-16)

Since a 2 > 1 and a 2 
> k2 , each of the radicals above will

be imaginarv. Equations 6 and 7 on page 1 in [10] ray bIc

used to obtain the last term of Eq. (A-16) as a real function

of a real argument.
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Let the value sought be

1 -1A-17S= tan- - i) (A-1

where X is real and either 1. Inverting,

1 1 sinlx+iy) sinh y cosh y-i sin x cos x
1 i tan i % - 1 cos x+iy) - cos x cosh 2 y+sin 2x sinh 2 y

(A-18)

where i4 5 x + iy. The condition that X be real implies

that either

x = nr or x= (2n-l) (A-19)
2

which in turn gives

= tanh-'X - in r or = coth- X - i(2n-l)!L.(A-20)

In either case the imaginary constant may be included as part

of the constant of integration so that H(U) remains real.

Using the appropriate values of a a2, and the

formula (A-16) for H(kcak) becomes for U < -573

-~ 1k0- -! k) + tanh - [
4' t4+ 3u2

(A-21)

and Eq. (A-14), completely in terms of tabulated functions, is

+H(U) = F(0,k) + /3( -i) E(0,k) + -

4u 3i+U -2 tanh (A-22)
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whe re

sin _ (.4 (.U )
4 r)- 7132U

(A -23)

- i.H4

For U ", , Eqs. (A-21) and 'A-22' must. be modified by

replacing tanh-1 by coth -  . The function H(U) is plotted

in Fig. 10 for r = 5 3 in the range 0 < U < 1 , and for

f = 2 < 3 in the range 0 < U < \,F /3 No plot for

U > 'fF3 is shown because this case does not actually occur

in the solutions constructed in Sec. IV. An infinity arises

at U = %J27 in Fig. 10, for the case r- = 2 K 3, because
the argument of tanh - - in Eq. (A-22) approaches unity and

the function becomes infinite. In the case > 3 , a simi-

lar situation exists, but on the branch U f 7 which is

not plotted.

For the special case tv 3 , Eq. (A-22) becomes

+H (U)~ F 2 /J3 E @--)(A-24)

which is always finite.

Figure 10 shows typical plots of H(U) in the region

where Eq. (A-22) applies. For a considerable part of the

range H(U) is nearly linear , so that the first term of

the power serics for H(U)

+ 11(U) 2U (r+4) (A-25)

may be used as an approximation.
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2. EVALUATION OF u

Differentiation of Eq. (3-14) yields

- 6tt - 3U-

= + 2 / + U2  L(4+13) - 6U 2 _2 3- (A-26)k 3 _ / 4+13-3U2L (

which, together with Eq. (3-19b), gives the derivative of U

F G 3 (tu M(!+3) - 6 -U 4U4]k G +_ 4 #_3U 2  (A-27) + 2)

and by integration

k+G- u(U) = Hu(U) ± const. (A-28)

where

HU)f /3(+U2 )  a3(4+0 - 6 u2 - 34U] 2UdU.(A-29)Hu(U =4+_3U_2 ( _3U ) (P+U ) 2d.A-9

Introduction of the new variable

• I/3( +uz= 4+-3U'Ze  (A-30)

gives

Hu(U) -2 +( -z) (l+z) dz (A-31)

When U < \ , i.e., z < J , the integral becomes

Hu (U) = 2 tan-1 z - 3 tanh-'--z - (A-32)
U 2 \/3 2z3
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Reintroducing the substitution (A-30) gives

Hu(U): 2 tan' /3I -K+U ' 3-)3 tanh-, 3i u'-)
V4+r-3u 2 -

- V (A-33)

Expressing the constant in Eq. (A-28) by the value of u at

U yields finally
2

.- r u(U) = + .y u(U ) + H (U) - H (U) (A-34)
-- -k 2 U U 2

where the sign of u corresponds to that of s

It should be noted that the argument of tanh-i approaches

unity as U - 131 3  Thus H u(U) behaves similar to H(U)

and becomes infinite at U N/73 , unless = 3

3. EVALUATION OF v

Equation (3-19d) gives v' in terms of sx  Tx nds,

Combining Eqs. (3-14), (3-15'. and (A-26), one obtains

G - : + - 6bU2 _- 311lv + -_ YfU)- 3U . (I+U2 )2  (A-35)

and by integration

+ v(Uj H (u) +i const, A-6
- T,' V

where

Hv(U) (:+) - d /A-37)

0
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Using the value of v at the boundary of the region to

evaluate the constant,

t F9k-'z =(U) = v(U ) + Hv(U) - H (U) (A-38)
k -- 2 v 2

where the sign of v is chosen to correspond to that of 'r.

Making the substitution T = a2  in the integral gives

U2 2

H v(U) f . l-q)(S-3r~, (k+) - dr

0

u2  (1(+3) - 6T -3T2

1 f "I dj . (A-39)

o 3

The last expression may be compared with No. 254.41 in [6],

Y -td = g R 2c du (A-40)
.,/(a-t) (b-t) (t-c) (t-d) f -i 2sn2ud

c 0 nu

where R(t) is any rational function, where

a > b > y > c > d (A-41)

and

sn2 A = (b-d)(t-c)
(b-c)(t-d) A

-2 (b-c (a-dj (A-42b)
=a-c) (b-d)
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= 2 (A-42c)

g ,/(a-c) (b-d)

0< , b-c < ^-d
0 = b-d ck  (A-42d)

un = sin 0 =~ ,/bd)-c (A-42e)
i (b-c) (y-d)

The cases 3 , < 3 , and = 3 must be treated

separately.

Case 3.a When 3

a = L b 1 c 0 d = -t , y = U (A-43)

satisfies the condition (A-41) for 0 K U < 1 , and Eqs.

(A-42) give

j2 4 ^ 1 2,/3k 4(A-44'

and

sin 0b snu = U (A-45)

The argument of R which appears on the right side of

Eq. (A-4o) is

sn2u

f. (1 - sn 2 )

and the integral (A-39) becomes

U l 4 4

i 4T 8snau + sn u
hv U1 2.1 - n u du. (A- 46,

(C+I) o. - +--- sn2u
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The use of the identity dn u k 2 ksn2^u , and Nos. 336.01,

337.01, 362.11 in [6], together with Eq. (A-44), results in

the final form of the integral

Hv(U) = 3 + E2"v)

(A-47)

where k, a, and q are given by Eqs. (A-44) and (A-45).

(In contrast to the situation encountered when determining
^ 2H(U), a being here less than unity, the function H is

tabulated.)

Case 3.b When f3 < 3, the inequality (A-41) is satis-

fied in the range 0 < U < / 3 by

a = 1 , b = , c = 0 d = - , y = U2 . (A-48)
3

Eqs. (A-42) give

2 13+1 2 (A-49)k 4 a4 4 g(

and

*A 2U)
sin =sn u - 2U (A-50)

The argument of R on the right-hand-side of Eq. (A-40) is

2^sn u
il1 2A

(l - sn u)

and the integral (A-39) becomes
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U 1

1 4"r- - (21 jl)sni - sn2 u dn 2 ud.
1(U) =

2 O 4sn d)

Using Nos. 336.01, 337.01, and 362.11 in [6] gives

H (U) = 2 \7 F(,k) + 2 E(O,k) - 2 H(,k) (A-52)

v 17

where k and 0 are given by Eqs. (A-49) and (A-50), re-

spectively.

Case 3.c When r 3 , Eq. (A-39) reduces to

HvU 75 - (+d- A-53)
=(U 2, (3 -)

0o+j vri73+'ij

which may be evaluated by using the substitution

z =+ I  •

The final result is

H v(U) = ,/3 tanh - 1 U + 4 U (A-54)
v3 ,'3 3+

The same result could also be obtained by substituting

= 3 into Eqs. A-44) and .A-47), or Eqs. (A-49) and

(A-52). For the resulting value of the modulus, k = I

the elliptic integrals reduce to simpler functions.
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APPENDIX B

USE OF THE METHOD OF CHARACTERISTICS WHEN THE

APPLIED SURFACE STRESSES ARE TIME DEPENDENT

In Sec. II, the basic partial differential equations

governing propagation of plane waves in both dissipative

and non-dissipative regions were obtained. In this Appendix

it will be demonstrated that the characteristic velocities,

V, , of these differential equations may be obtained from1

Eqs. (3-14, 15) relating s , T and U , but that diffi-

culties arise in the application of the method of charac-

teristics.

1. DISSIPATIVE REGIONS

Equations (2-15), (2-17),and Eq. (2-19) differentiated

with respect to time, using also Eq. (3-3), give the quasi-

linear set of differential equations

00-- 0 0 0 0 0 -s 03 x 2G G x

0 0 -1 0 0 0 0 0 0 0 0 J 0

1 __ 0 0 0 0 0 0 -p 0 0 0 u 0
i i oa + 1, -

11 x0 0 0- 1 0 6t0.
002 2G G

V V1 V1 U v U

10 0 0 00 jLIs 0 OT 0 0j LAiL0
(B-1)
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Using matrix notation, Eq. (B-i) becomes

A'ux + B'u t = 0 (B-2)

where u is the column matrix of the unknowns, and I P'J / 0.

Premultiplying Eq. (B-2) by B'- ' gives

Aux - ut± 0 (B-3)

where

A = B -1 A' (B-4)

Using the procedure in [ii], the characteristic velocities

V are obtained from

I A - VI 0 (B-5)

where I is the unit matrix, and

S4G-C2 Gs T
3k-i

0 0 -.G 0 0 0

Ii 1 0 0 0 0
F- (B-6)

Gs T 3Gs2

x 0 xo U -- -T7 o

0 0 0 0 0
p

Gs

0 0 x 0 GT
---

-47-



Making the substitution

S (B-7)

the condition (B-5) gives

2

u2 [(1-u 2 )( -3u 2 ) - (k) (+u 2)] = 0 (3-8)

This equation is identically satisfied by Eq. (3-15) so

that t13 values U as functions of T (or sx) define the

non-vanishing characteristic velocities.

Solution of Eq. (B-8) for U2 gives, in addition to

the root U2 =0 , always two different positive roots U2

so chat there are four characteristic velocities, V =-V ,1 2

V = -V , in addition to the degenerate double value
3 4

V = 0.0

After appropriate manipulation, the compatibility equa-

tions along the four non-vanishing characteristics become

1 pV.Lu + k2 [32L PVLs+ I j- +T _

4PVk2[2 + _ V av =0 (B-9)s xT 13k 3 G

where As , AJ , etc., are the increments of the respective

functions along the characteristics. The degenerate double

value, V = 0, furnishes the relations

s s + tAT = 0 (B-10)
4 x x

2SxGX-3AJ1 -s aS (B-l)
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The first of these equations can be recognized as the in-

crement of the yield condition.

The five Eqs. (B-), 10) permit the step by step evalu-

ation of the five quantities s x . J . u, z, and v within

a dissipative region, while Eq. B-lI) provides the neces-

sary check that , > 0, required in a dissipative region.

2. NON-DISSIPATIVE REGIONS

Startirg with Eqs. (2-15) and (2-21), one finds the

equation

v[ -G4 V2 - = 0 (B-12)
p 3'

for the characteristic velocities. There is one degenerate

value

V :0

and the four well-known values

'7 ~ /c~ (B-13)!. -- P 3

V ~ CS~V G(B-14)
3,4 -

where c and cS  are the velocities of P- and S-waves,

respectively. The relations along the characteristics are

4
For V - / x - AJ 0 (B-15)

For V + Cp : As - Z u (
1,2 P x 3 1 c0

For V 2 - c S : AT T pcStL = 0 (B-17)
2--
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These relations are applicable, provided the increments

of the stresses are such that the inequality (2-22) remains

satisfied.

The appearance of the degenerate value V = 0 is due0

to the fact that the formulation, Eqs. (2-15) and (2-21),

uses s and J as separate variables, instead of the
x 1

single unknown x = sx + J /3 sufficient for the solution

of a purely elastic problem.

3. DISCONTINUITIES

Elastic discontinuities of well known nature may propa-

gate with the velocity of P- or S-waves, + Cp, + cs , re-

spectively, while dissipative shock fronts, discussed in

Subsec. III.B, have a velocity c + V , and ark restricted

to locations where T = 0

Wher constructing solutions involving discontinuities,

analytical relations are required to follow the interaction

of elastic and plastic fronts with adjoining continuous

plastic, arid elastic regions, respectively. There is no

particular difficulty in deriving the appropriate relations.

They were not derived here, since they are not required for

the discussion which follows.

I. DIFFICULTIES IN THE DETERMINATION OF SOLUTIONS

The difficulties encountered are best illustrated by

considering the Cauchy boundary value problem. The usual

finite difference technique can be used in any location

which is known to be entirely in either an elastic or a

dissipative region, removed from an interface or discontin-

uity. Figure 11 illustrates a step from t to t + At.
1 1

The values of all functions are known for t = t , i.e.,
1
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along A-E. At point P , there are five unknowns, which may

be obtained from the respective five equations along the

characteristics, subject to check on the yield condition, or

on A > 0 , as appropriate. There is no difficulty at a

point where yield has not been reached, the elastic relations

must certainly apply. However, disregarding discontinuities,

consider a situation where the yield condition is satisfied

for a portion of the range A-E, indicating that there might

be an elastic-plastic boundary. To locate a point P on the

boundary and the inclination a of the latter, Fig. 12-a,

one can combine the conditions along those elastic and plas-

tic characteristics which lie in the proper regions, but,

depending on the value of a, there are a variety of possi-

bilities. There are six unknown quantities, the inclination

a , three stresses, and two velocities, while the yield con-

dition and five or six characteristic conditions are avail-

able. Over-determination, Fig. 12-b, in case the seven con-

ditions apply is no difficulty. It may simply mean that the

particular location may not occur. There are, however,

values of a as shown in Fig. 12-c where six conditions

apply, one of which is an inequality, with a possibility of

indeterminancy. Before proceeding with a numerical analysis,

it is necessary to ascertain the existence and uniqueness

of the solutions for the location of, and stresses at a

boundary point P from the conditions available for all pos-

sible situations. If this can be achieved, the additional

possibility of discontinuities, the velocities of propaga-

tion of which are known, should be no serious obstacle.
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